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Abstract. Wavefunctions in a phase-space representation can be expressed as entire functions
of their zeros if the phase space is compact. These zeros seem to hide a lot of relevant and
explicit information about the underlying classical dynamics. Besides, an understanding of their
statistical properties may prove to be useful in the analytical calculations of the wavefunctions
in quantum-chaotic systems. This motivates us to pursue the present study which by a numerical
statistical analysis shows that both long-range correlations as well as short-range correlations
exist between zeros; while the latter turn out to be universal and parametric independent, the
former seem to be system dependent and are significantly affected by various parameters, i.e.
symmetry, localization, etc. Furthermore, for the delocalized quantum dynamics, the distribution
of these zeros seem to mimic that of the zeros of the random functions as well as random
polynomials.

1. Introduction

In this paper, our aim is to study the statistical distribution of zeros of ‘quantum chaotic’
wavefunctions, expressed in a phase-space representation. The wavefunctions of quantum-
chaotic systems have so far remained a relatively less explored (as compared with spectra)
area notwithstanding their importance in quantum mechanical as well as semi-classical
analysis. Their few known properties are the microcanonical nature of wavefunctions
if the underlying classical dynamics is chaotic [1], the scarring behaviour [2, 3] and
dynamical localization [4] or a few statistical (numerical) studies of the components of these
wavefunctions [5, 6]. The relevant information hidden in the semiclassical wavefunction
about the underlying quantum-classical correspondence is not yet fully extracted. This
motivates us to pursue the present problem. As intuition suggests, this can be studied best
by analysing various properties of the wavefunctions in the phase space where quantum
dynamics in the limit ¯h → 0 can be compared with the underlying classical dynamics.
One such analysis involves the study of the distribution of zeros (or nodal patterns) of
wavefunctions (in a phase-space representation).

The interest in the phase-space study of the nodal patterns arises following a study
by Leboeuf and Voros [7, 8] where they showed that the coherent-state representation of a
wavefunction (i.e. Bargmann or Husimi function) has a finite numberN of zeros in phase
space (N being the dimension of Hilbert space) and the state of the system can be completely
expressed in terms of these zeros. Furthermore, their numerical studies on quantum maps
(e.g. Baker and kicked rotor) have also revealed that the zeros, in the semiclassical regime
h̄ → 0, condense on lines for classically integrable systems whereas for strongly chaotic
quantum maps they appear to diffuse fairly uniformly over the phase space; this behaviour
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can be explained semiclassically [7, 8]. The only exception to this behaviour, so far, has
been seen for one eigenfunction in theN = 2k case of the Baker map (strongly chaotic)
where zeros have a dominantly linear distribution. In general, the distribution of zeros seems
to mimic the underlying classical dynamics in semiclassical limit (for example for those
chaotic cases of the kicked rotor, where quantum dynamics is localized in momentum space,
zeros were observed to be localized). This makes it relevant to seek further information
about their behaviour.

In principle, we have an analytical formulation available to write the eigenfunction
directly in a nodal pattern representation (a polynomial for spherical phase space and a
complicated function for torus and cylindrical phase space) [7]. But this formulation does
not help us very much as it depends on the knowledge of the position of each zero in
phase space which is analytically difficult to evaluate. Still it can be used to determine the
statistical behaviour of the eigenfunctions if the statistical properties of zeros are known.

The random nature of a chaotic wavefunction and its polynomial form in the Bargmann
representation (in a spherical phase space only) has motivated people to seek analogy
between the distribution of its zeros and roots of random polynomials (RP) [9]; recently we
analytically explored [10] the statistical properties of the latter case. Our results showed
an excellent agreement with the corresponding ones for the kicked top and kicked rotor.
It was a little surprising in the latter case where dynamics was confined to a torus and
an arbitrary wavefunction was a complicated function instead of a polynomial; one should
expect the zeros of random functions (superposition of functions with random weight, later
referred to as RF) to be a better model. This seemed to hint that the zeros, while distributing
themselves in the semiclassical limit, do not distinguish between spherical and torus phase
space [10]. In other words, the zeros of RF and RP seem to have the same distribution
properties. As we show in this paper, this is indeed the case. We also extend the above
study to understand the effect of various parameters (i.e. symmetry breaking, localization,
etc) on the distribution of zeros. We expect this due to our prior knowledge of the significant
influence of these parameters on quantum dynamics [4, 11, 12].

We choose the kicked rotor system for this purpose as it has been an active model of
research, containing a variety of features such as localization, resonance, dependence of
the spectra on number theoretical properties, etc and has been used as a model for a very
wide range of physical systems [4]. Besides, the kicked rotor can also display discrete
symmetries such as parity and time reversal [5, 11, 12]. This will enable us to study the
way these symmetries reveal themselves in the distribution of zeros.

This paper is organized as follows. Section 2 contains a brief review of
quantum properties of kicked rotor. Section 3 briefly describes the various phase-space
representations and their advantages over each other. Section 4 deals with the numerical
analysis of the distribution of zeros for kicked rotor for various parametric conditions,
followed by a conclusion in section 5.

2. The kicked rotor: Classical and quantum dynamics

The kicked rotor can be described as a pendulum subjected to periodic kicks (with period
T ) with the following Hamiltonian

H = (p + γ )2
2

+ K

4π2
cos(2πθ + θ0)

∞∑
n=−∞

δ(t − nT ) (1)

where K is the stochasticity parameter. Parametersγ and θ0 are introduced in the
Hamiltonian in order to mimic the effects of the time-reversal(T ) and the parity(P )
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symmetry breaking in the quantum Hamiltonian while acting in a finite Hilbert space.
Floquet’s theorem enables us to describe the related quantum dynamics by a discrete

time-evolution operatorU = GBG where B = exp(−iK cos(2πθ + θ0)/4π2h̄) and
G = exp(−i(p+γ )2/4h̄). Hereθ andp are position and momentum operators respectively,
with p having discrete eigenvaluesp|l〉 = lh̄|l〉 due to the periodicity ofθ(θ = θ + 2π).
The nature of the quantum dynamics and therefore the statistical properties of the associated
quantum operators depend on ¯h andK. The choice of a rational value for ¯hT/2π results in
a periodicity also for the momentum space (p = p+ 2πM or l = l +N ) and, therefore, in
discrete eigenvalues forθ(θ |n〉 = 2πn

M
|n〉). The quantum dynamics can then be confined to

a two-dimensional torus (with finite Hilbert space of dimensionN ) andU can be reduced
to a finiteN -dimensional matrix of the form [7, 4]

Umn = 1

N2

∑
j

exp

[
−i

K

4π2h̄
cos

(
2πj

N
+ θ0

)] N1∑
l,l′=−N1

exp[−i(π2h̄(l2+ l′2)− πγ (l + l′))]

exp

[
−i

(
l(m− j)+ l′(j − n)

N

)]
(2)

whereN1 = (N − 1)/2 (with N odd) andm, n = −N1,−N1+ 1, . . . , N1.
In contrast to the classical dynamics, the quantum dynamics can be significantly affected

by the relative values of three parameters, namely,K, h̄ andN . It has already been pointed
out [4] that, forK2 > Nh̄2(= 2πM/T ), the eigenstates are fully extended in momentum
space (later referred to as the delocalized case); it is also called the strong chaos limit as
here the kick is strong enough to make the classical motion ergodic in all of the phase space
[12]. We also know that the spectrum, as well as the distribution of eigenvector components
in this case, with parametersγ andθ0 chosen to preserve either exact or partially violated
symmetry, can be modelled by the random matrix theories (RMT) [5, 6, 11, 12]. Under
this limit, the quantum dynamics has a time-reversal symmetryT for γ = 0 and a parity
symmetryP for θ0 = 0. Although theT -symmetry may be violated forγ 6= 0, still a more
generalized antiunitary symmetryS = T P = PT can be preserved in the system ifθ0 = 0
[5, 11]. By a slow variation of these parameters, one can realize the various intermediate
stages of the statistical properties of quantum operators, for example, the Poisson→ COE
transition of the spectrum forK-variation, COE→ CUE for γ -variation withθ0 fixed at a
non-zero value etc. In the opposite limit of weak chaos, namely,K2� Nh̄2 (corresponding
to a diffusively covered phase space with a non-uniform distribution of periodic orbits), the
eigenstates localize in the momentum space and one obtains a Poisson distribution for the
spectrum (later referred to as the localized case). Moreover, here the symmetry breaking
may not be realized in the quantum dynamics just by makingθ0 or γ sufficiently non-zero.

3. The phase-space representations of wavefunctions

The phase space representation of the eigenfunctions of quantum mechanical operators
can give excellent information about the semiclassical description of a quantum state. A
semiclassical wavefunction can be constructed, first by writing the quantum state as a
function of the parameter ¯h, and then by exploiting the fact that this function should
approach the corresponding classical function in the limit ¯h → 0 [13]. This is easily
observed in the phase-space representation of quantum state, where the quantum dynamics
(the Heisenberg equation), analysed in terms of density operatorρ = |ψ〉〈ψ |, explicitly
appears as a deformation of classical dynamics (the Liouville equation). This enables one
to compare the quantum function with the corresponding classical function, order by order



6316 P Shukla

in h̄. The inversionW → ψ then gives, in principle, the quantum state for various orders
in h̄. The two most widely used phase-space techniques are the Wigner representationWw

defined as

Ww(q, p, h̄) = (2πh̄)−N
∫
ψ
(
q − r

2

)
ψ
(
q + r

2

)
eipr/h̄ dNr (3)

and the Husimi representationWh given as

Wh(q, p, h̄) = |〈z|ψ〉|
2

〈z|z〉 (4)

where|z〉 is a plane coherent state described by following standard formulae,

|z〉 = ez̄a
+|0〉 a+ = (q̂ − ip̂)√

2h̄
z = q − ip√

2
(5)

with q and p being the position and momentum eigenvalues of the operatorq̂ and p̂
respectively and its overlap with position wavefunction given as follows

〈q|z〉 = (πh̄)−N/4 exp[−(ẑ2+ q2)+
√

2ẑq/h̄]. (6)

Both of these representations have a nice semiclassical behaviour, converging to the classical
phase-space distribution in the limith→ 0. But the determination of this convergent form
of Ww andWh can be done only after smoothing out the oscillations (stronger in the case of
Ww) existing in both cases. In general, however (i.e. for chaotic cases) even this knowledge
is not sufficient to reconstruct the wavefunction itself by inverting the mapW → ψ . The
reason is that the quantum phase, which controls the fast oscillations, is obliterated in the
limiting process and cannot be easily regenerated. Moreover, these representations also
run into difficulties when applied to compact phase spaces. It is because the existence
and uniqueness of the construction of the Wigner representation, which imposes itself by
symmetry on a linear phase space, is no longer clear on a compact space [7]. One does
not face these difficulties with the Husimi representation which only needs coherent states.
But the usual plane coherent state, used in Husimi formulation, becomes non-analytic when
restricted to a compact space [7]. Thus, for our purpose, we should choose a coherent state
with analytical properties in compact space.

As discussed in [7], the analyticity of the quantum state can be preserved by expressing
it in the ‘Bargmann representation’. This representation diagonalizes the creation operatorẑ

and expresses a state as a functionψ(z) = 〈z|ψ〉 with ẑ+ = h̄ d
dz (similar to the Schr̈odinger

representationψ(q) of the quantum state, obtained by diagonalizing the position operator
q̂ with p̂ = −ih̄ d

dq ). The functionψ(z), describing the overlap of wavefunctionψ with the
coherent state|z〉, belongs to a Hilbert space of entire (analytic) functions with the finite
norm given as follows

〈ψ(z)|ψ(z)〉 = (2πh̄)−1
∫
|ψ(z)|2e−|z|

2/h̄ dq dp. (7)

Furthermore the Husimi function can be expressed in terms ofψ(z) asWH = |〈z|ψ〉|2/〈z|z〉.
Thus, one can considerψ(z) as a sort of phase-space representation for the wavevector|ψ〉.
The advantage of working withψ(z) is that it preserves the information about the quantum
phase explicitly.

It was shown in [7] that the antianalytic coherent states for compact space such as the
torus (the case considered here) can be obtained by applying periodic boundary conditions
on the antianalytic coherent states|z〉 on the plane. Thus, the imposition of the appropriate
periodic boundary conditions on the kernel (4), depending on the nature of the compact



On the distribution of zeros of chaotic wavefunctions 6317

space, leads to a Hilbert space of entire functionsψ(z). For our purpose, we only mention
here the case of the torus, where application of the periodic boundary conditions in both
the q as well asp directions and use of the condition 2πNh̄ = 1 results in the following
form for ψ(z)

ψ(z) =
N−1∑
n=0

ψ(qn)〈〈z|qn〉〉 (8)

whereψn’s are the eigenfunctions of operatorU in the coordinate representation and〈〈z|qn〉〉
is the projection of the coordinate eigenfunction|qn〉 in the z-space, under the periodic
boundary conditions

〈〈z|qn〉〉 = (2N)1/4 exp[−2πN(z2+ q2
n)/2−

√
2zqn]θ3

(
iπN

[
qn − i

θq

2πN
− z
√

2

]
|iN

)
.

(9)

Here coefficientsψ(qn)’s are complex under no-symmetry condition. But the presence of
a T -symmetry makes them real as now ifψ(zp) = 0 thenψ(T zp) = 0 too [10]. The
existence of an additional symmetry such as parity imposes further restrictions onψ(qn)’s;
ψ(qn) = 0 if n is odd andψ(qn) 6= 0 if n is even. Further, by using the periodic boundary
conditions leading to this compact space, it can be shown [7] that every functionψ(z) has
exactlyN zeros in the fundamental domain (defined byδq = 1, δp = 1).

It is worth reminding ourselves here that, for a spherical phase space,〈〈z|qn〉〉 takes
the form of a polynomial [7] and therefore the choice ofψ(qn)’s as a Gaussian random
variables leavesψ(z) as a random polynomial. In [10], we analytically calculated the joint
probability density of these zeros as well as the correlation function and compared the
result with numerical results for kicked top (which has a spherical phase space); we found
a good agreement. But as is obvious from equation (9), for a torus phase space,ψ(z) is
not a polynomial. A choice ofψ(qn)’s as random variables gives rise to a random function
(later referred to as RFC for complex and random coefficients, RFR for real and random
coefficients and RFA if the coefficients are real, random and non-zero for evenn and zero
for odd n).

4. Numerical analysis

With this knowledge, we can now proceed as follows. (i) Numerically compute the
eigenfunctions by diagonalizing the matrixU (equation (2)); (ii) calculate their Bargmann
transforms, using equation (8); (iii) numerically compute the position of each zero using
Cauchy’s integral (see [7]); (iv) use the so obtainedN2 zeros (N for each of theN
eigenfunctions) to evaluate the various statistical measures. For the reasons explained above,
we repeat steps (iii) and (iv) also for random functions cases, with normally distributed
coefficientsψ(qn)’s.

To see the effect of various parameters on the statistical behaviour of zeros, the above
steps are repeated for many of their combinations. Here, until otherwise stated, we always
take (K = 20 000,M = 1, N = 199, γ = 0.7071, θ0 = π/2N ) for the delocalized
case with no symmetry, (K = 20 000,M = 1, N = 199, γ = 0.0, θ0 = π/2N ) for the
delocalized case with one symmetry (time reversal), (K = 20 000,M = 1, N = 199,
γ = 0.0, θ0 = 0.0) for the delocalized case with two symmetries (namely time reversal and
parity) and (K = 10,M = 30, N = 199, γ = 0.7071,θ0 = π/2N ) for the localized case
with no symmetry. To improve the statistics, we superimpose the statistics forN zeros of
each of theN eigenfunctions and setT = 1.
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We start by computing the densityρ of zeros, distributed over the phase plane of unit
area. We know that the eigenfunctions of RM ensembles, in the Bargmann representation,
have the form of the RPs. The nature of the coefficients in these polynomials depends on
the symmetries of the ensembles (for example complex for no antiunitary symmetry and
real for 1 antiunitary symmetry). Recently it was shown that the zeros for RP with complex
coefficients are uniformly distributed in the phase space for any arbitraryN while, in the case
with real coefficients, this uniformity no longer survives due to an increased concentration
of zeros on the real axis [10]. The same should hold well for the eigenfunctions of
quantum systems with strongly chaotic classical dynamics where a typical wavefunction
randomly goes all over the phase space and has a uniform intensity distribution except for
a few scars (high-intensity regions) [1, 2]. This expectation has its roots in the success
of RMT in modelling ‘quantum chaotic’ spectra; we hope the same for ‘quantum chaotic’
eigenfunctions too. In fact, figure 1(a) which shows the distribution of 99× 99 zeros of
all 99 eigenfunctions of QKR (K = 20 000,M = 1, N = 99, γ = 0.7071, θ0 = π/2N )
strongly suggest the uniformity of density in the phase plane. The various parameters here
are chosen so as to ensure the underlying classical dynamics to be strongly chaotic and
removal of all symmetries from the quantum case [5, 11, 12]. Figure 1(b) shows the case
with a chaotic classical dynamics while the quantum dynamics is localized in the momentum
space (K = 10,M = 30, N = 99, γ = 0.7071,θ0 = π/2N ). Here again the zeros seem
to be randomly and uniformly distributed, except for an increased concentration on parity
symmetry axisq = 0.5 (reasons explained later). The apparent randomness and uniformity
of the distribution of zeros (away from the axis) in this case is indeed misleading and occurs
due to the averaging effects produced by the superposition of many wavefunctions. In fact,
figure 2(a), where the Husimi distribution of a single eigenfunction is plotted, shows that
the zeros for the localized case, in general, form patterns; for few of the eigenfunctions,
zeros seem to be localized too. It seems that the maximum intensity regions, in order to
concentrate in some part of phase space, compel minimum intensity regions to distribute in
an ordered way. This pattern formation of zeros is more obvious for the eigenfunctions of the
localized dynamics with a symmetry (figures 2(b) and (c)). Figure 2(d) shows the Husimi
plot of an eigenfunction for delocalized case. Here zeros of even a single eigenfunction
seem to be uniformly distributed. In fact, the distribution approaches the uniformity in
N →∞, i.e. the semiclassical limit (unlike the RMT case where uniformity exists for all
N ) and therefore mimics the behaviour of underlying strongly chaotic classical dynamics.

In order to see whether the densityρ(p, q) is separable in variablesp andq or not, we
calculate the coefficient of correlationC(m, n), defined as follows

C(m, n) = 〈p
mqn〉 − 〈pm〉〈qn〉
σ(pm)σ(qn)

(10)

whereσ 2(rm) is the variance ofmth moment of the variabler. To see the effect of various
parameters as well as the dimensionality, we calculateC(m, n), (m + n < 8), for the
delocalized case with no symmetry, one symmetry and two symmetry respectively and also
for the localized case with no symmetry, with each case studied for four values ofN ,
namely,N = 61, 99, 149, 199. We find that, for all the parametric cases, the correlations
betweenp andq variable decrease withN . In fact, the correlations for lower moments are
much less than one sample error even forN = 61 (with C(m, n) 6 10−5 for m + n 6 5
and sample error= 10−2), thus indicating their near absence even for smallN -values. The
correlations for higher moments(m + n > 5) although not negligible for smallN -values,
they decrease rapidly with increasingN and can safely be assumed to be zero in the limit
N →∞ (for exampleC(4, 4) = 0.018±0.016 forN = 61 and 0.003±0.005 forN = 199,



On the distribution of zeros of chaotic wavefunctions 6319

Figure 1. The superposition of the zeros of all eigenfunctions ofU , (a) K = 20 000,M = 1,
N = 99, γ = 0.7071,θ0 = π/2N ; (b) K = 10,M = 30,N = 99, γ = 0.7071,θ0 = π/2N .

for the delocalized case without symmetry). This implies that, for the delocalized as well
as the localized case, we can study the distribution of zeros in either thep or q direction
without taking care of theq or p variable, respectively. Thus, for a check on uniformity,
it is sufficient to study the measure〈ρ〉q and 〈ρ〉p (where 〈 〉r implies the average over
variable r). As shown in figures 3(a) and (b), the averaged density in bothq (averaged
overp) andp directions (averaged overq) for the delocalized case is nearly a constant, thus
indicating a uniform distribution while, for the localized case, it oscillates strongly about an
average value. Here the increased average density around some values ofp andq implies
the preference of zeros for this value; this behaviour may be attributed to the localization
and pattern formation of zeros. For the delocalized case, the oscillation strength decreases
rapidly with increasingN which indicates the uniform density also in thep direction, in
the large-N limit. For comparison, we have also plotted the corresponding RF case in
both figures 3(a) and (b); the set of normally distributedψ(qn)’s is generated by using
‘GASDEV’ subroutine [14]. Note the similarity of the delocalized case with the RF case
in figures 3(a) and (b).

To see the effect of the symmetry on the distribution of zeros, we study it for various
values of parametersγ and θ0. Figures 4(a) and (b) show the distribution of the 61× 61
zeros of all 61 eigenfunctions of QKR for (K = 10,M = 30, N = 61, γ = 0.0, θ0 = 0)
and the case (K = 10, M = 30, N = 61, γ = 0.0, θ0 = π/2N ). Here the first set of
values correspond to the preservation of bothT andP symmetries in the system whereas
in the second case onlyT -symmetry is preserved. Figure 4(a) shows the increased density
of zeros on the two symmetry axis (namely,p = 0.5 andq = 0.5) while in figure 4(b)
the zeros are concentrated only on one symmetry axis; the concentration of zeros also on
p = 1.0 is due to the torus boundary conditions. Moreover, zeros on either side of the
symmetry axis seem to avoid it, thus creating a hole close to and around the symmetry
axis. This phenomenon, which occurs in the case of RP (and RF) too, can be explained
as follows. Ifψ(zp) = 0, thenψ(Rzp) = 0, whereR refers to a particular symmetry in
the quantum system andRzp refers to theR-symmetry counterpart ofzp. This implies
that, givenzp a zero of wavefunctionψ , Rzp will also be its zero; zeros either come by
pairs symmetric with respect to the symmetry axis or they are single and lie on the axis
(see also a related work in [15]). Although this destroys the uniformity of distribution of
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(a) (b)

(c) (d)

Figure 2. The Husimi distribution of a single eigenfunction, (a) K = 10, M = 30, N = 61,
γ = 0.7071, θ0 = π/2N ; (b) K = 10, M = 30, N = 61, γ = 0.0, θ0 = 0.0; (c) K = 10,
M = 30, N = 61, γ = 0.0, θ0 = 0.0; (d) K = 20 000,M = 1, N = 61, γ = 0.7071,
θ0 = π/2N .

zeros on a global level, locally and away from the symmetry axis the uniformity is still
preserved (figures 3(c), (d), 4(a), (b)). It should also be noted in figure 1(b) that although
bothγ andθ0 are non-zero, the density of zeros is still higher along theq = 0.5 line while
this behaviour is absent in the delocalized case for the same values of symmetry breaking
parameters (figure 1(a)). It seems that for the localized case, a more generalized symmetry
remains preserved even for non-zero values ofγ andθ0.

In order to analyse the correlations between these zeros as well as to know the extent
of randomness, we compute the two-point correlation functionR2(r). It is defined as
the joint probability density of finding a zero at a radial distancex from the origin and
another atx + r, averaged over allx andθ , whereθ is the angular dependence of the zero.
Here r is measured in units of averaged spacing andR2(r) is unfolded in such a way so
that the average number of zeros at a distancer from a given zero does not depend on
r. In [10], we analytically obtainedR2(r) for zeros of RPs; a numerical comparison of
this formulation with that for the kicked spin system as well as the kicked rotor showed
an excellent agreement. Here we numerically compareR2(r) for delocalized QKR with
that for the random functions (with complex coefficients to model the no-symmetry case
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Figure 3. The densityρ(q, p) of zeros in phase plane with respect toq (averaged over all
values ofp and measured in units of〈q〉) andp (averaged over all values ofq and measured in
units of 〈p〉), (a) and (b) K = 20 000,M = 1, N = 99, γ = 0.7071,θ0 = π/2N , (full curve),
K = 10,M = 30,N = 99, γ = 0.7071,θ0 = π/2N , (broken curve), RFC case (dotted curve);
(c) and (d) K = 20 000,M = 1, N = 99, γ = 0.0, θ0 = π/2N , (full curve), RFR case (dotted
curve).

and real coefficients for the time-reversal symmetry preserving case) and find the latter to
be a good model for the former; see figures 5(a)–(c). The agreement of the results also
confirms that zeros for both random polynomials and random functions, inN →∞, have
similar correlations at least up to the second order. The histograms in figures 5(a)–(d) also
indicate that, for short distances, the two-point correlation increases as a power law with
distance, attains a maximum value and then oscillates rapidly around this average value
when distances are large. Thus, for short distances(r < 1), zeros seem to repel each
other; the repulsion is weaker for the localized case than the delocalized case (figure 5(d)).
Furthermore, the presence of a symmetry weakens the repulsion at short distances but does
not seem to affect the correlations at large distances (figures 5(b)–(d)) (but as shown later,
long-range correlations are indeed symmetry dependent). Our comparison of short-range
correlations under various symmetry conditions for manyN -values (61, 99, 149, 199)
seems to suggest the decreasing tendency of differences in the repulsion strength under
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Figure 4. The superposition of the zeros of all eigenfunctions ofU ; (a) K = 10, M = 30,
N = 61, γ = 0.0, θ0 = 0.0; (b) K = 10,M = 30,N = 61, γ = 0.0, θ0 = π/2N .

various parametric conditions with increasingN . We believe that no difference should
survive in theN → ∞ limit; this is also corroborated by our spacing study given later.
Moreover, the short-range(r < 1) correlation between zeros is different from that for the
two-dimensional random distribution of points withR2(r) = 1 but behaves in a similar
fashion forr > 1. Note here that the long-range behaviour for all the cases approaches 1,
although oscillating heavily around it, irrespective of the parametric conditions or the type
of the distribution. These oscillations are not insignificant; they should contain information
about the differences in long-range correlations under various parametric conditions so as
to agree with our number-variance study, given later.

TheR2(r) study suggests that the short-range correlations are free from the influence of
various parameters. To understand this better, we carry out a study for the nearest-neighbour
spacing distributionP(s) of zeros (with all geometrical factors scaled out; see [10]) for both
QKR as well as RFs. A comparison of the two reconfirms the conclusion obtained by the
R2(r) study, that is, the short-range fluctuation measures of zeros distribution of random
functions can model very well that of QKR (figures 6(a)–(c)). To understand the functional
behaviour ofP(s), we fit the following equation

P(s) = αsa exp[−βsb] (11)

wherea andb are the fitting parameters andα andβ are obtained by imposing the following
normalization conditions,

∫ 2
0 P(s) ds = 1 and

∫ 2
0 sP (s) ds = 1. The fitting analysis carried

out for four values ofN = 61, 99, 149, 199 leads us to expecta = 1.5 and b = 5.
Using these values as a hypothesis forP(s), we perform theχ2-analysis which gives us
χ2 = 12.56 forN = 199 and 14 degrees of freedom at a 5% level of significance, a value
much less than the theoreticalχ2-value (= 23.68). This therefore indicates the correctness
of our hypothesis. We also find that the calculatedχ2-value decreases with increasingN
(e.g.χ2 = 148.18 for N = 99 and 14 degrees of freedom) which implies the tendency of
P(s) to approach our hypothesis in theN →∞ limit.

OurP(s) analysis also shows that the short-range correlations between the zeros are not
of the same type as those for a two-dimensional random distribution of points (withP(s)

being a two-dimensional Poisson distribution witha = 0 andb = 2 [10]). In fact, it has
been indicated [8] that the appearance of a term of the type of generaln-body interaction
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Figure 5. The histogram for two-point correlation functionR2 of the zeros (with unit mean
spacing), (a) delocalized without any symmetry (full histogram) and RFC (dotted histogram);
(b) delocalized with one symmetry (full histogram) and RFR (dotted histogram); (c) delocalized
with two symmetries (full histogram) and RFA (dotted histogram); (d) with respect to small
values ofr, no-symmetry case (full line), one symmetry (dotted line), two-symmetry (small-
broken line), localized case (large-broken line). Note here the difference between various curves
is bigger than the finite-sample error(≈ 5× 10−3) associated with each case.

in the dynamics of zeros should produce strong short-distance correlations among zeros.
Furthermore, for finiteN -cases, the repulsion between these zeros for small distances is
stronger for the localized case than the delocalized case. The presence of the repulsion leads
zeros of the delocalized case to distribute uniformly in the phase space but the distribution
is not a random one. In the localized case too, the existence of a stronger repulsion may
be the cause of the pattern formation of zeros. Again the presence of a symmetry affects
the spacing distribution for small-s values, by increasing the probability of small-spacings
relative to the no-symmetry case (figure 6(d)); this happens due to many very close-lying
zeros on the symmetry axis. But our analysis for variousN -values indicates the tendency
of this probability to decrease with higherN , approaching the same behaviour as in the
no-symmetry case (i.e. equation (14)) in theN → ∞ limit. This is what we expect as
the fraction of zeros(N+1/2) on the symmetry axis vanishes in the semiclassical regime.
The fitting analysis followed by theχ2-analysis further confirms that, in theN →∞ limit,
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Figure 6. The histogram for nearest-neighbour spacing distribution (with unit mean spacing) (a)
delocalized without any symmetry (full histogram) and RFC (dotted histogram); (b) delocalized
with one symmetry (full histogram) and RFR (dotted histogram); (c) delocalized with two
symmetries (full histogram) and RFA (dotted histogram); (d) localized case with no symmetry
(full histogram) and delocalized case with no symmetry (dotted histogram). Here the full curve
in (a)–(c) is the fitting given by equation (14).

P(s) is not affected by the presence or absence of a symmetry, localization or delocalization
of quantum dynamics and can be described by equation (11). The calculatedχ2-value, if
equation (11) is taken as a hypothesis, is 12.56, 18.24 and 30.78 for 14 degrees of freedom
of one symmetry, two symmetry and the localized cases respectively. This is much less
than the theoreticalχ2(= 23.68) at the 5% level of significance for the first two cases, thus
indicating correctness of our hypothesis. For the last case, although the observed value is
much greater than the theoretical one even forN = 199 but again the decreasingχ2 with
increasingN (for exampleχ2 = 199.65 for N = 99 and 14 degrees of freedom) suggests
the validity of equation (11) in theN →∞ limit for this case too.

The R2(r) study does not inform us much about the effect of various parameters on
long-range correlations. We study, therefore, another fluctuation measure, namely, the
‘number variance’n(r) which is defined as the variation in the number of zeros in an area
of size r2, wherer2 is sufficiently large to include many zeros on an average and its two-
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Figure 7. Number variancen(r), (a) delocalized without any symmetry (full curve), localized
case (broken curve) and RFC (dotted curve); (b) delocalized with one symmetry (full curve) and
RFR (dotted curve); (c) delocalized with two symmetries (full curve) and RFA (dotted curve).

dimensional analogue of the number variance quite often used for spectrum studies. For a
random distribution of points distributed on a unit plane (with no correlation among them),
the variance increases asr2. if the variance remains smaller thanr2 as the mean number
of zeros increases, the existence of a long-range correlation in the spectrum is indicated.
Figure 7 shows that the variance in the number of zeros for larger is increasing with
r; the rate of increase, for both QKR and RF, is much slower than that of the random
distribution of points. This reflects that long-range correlations are indeed present among
zeros of both QKR and RF, although stronger in the former as compared with the latter, if
the dynamics is localized or symmetries are present (figures 7(a)–(c)); the reverse is true if
the dynamics is delocalized with no symmetry (figure 7(a)). As can be seen from figure 7,
these correlations are strongest for delocalized dynamics with no symmetry, a little weaker
for symmetry cases and weakest for localized cases. A similar tendency was also seen in
the case of the eigenvalues [5, 12]; the presence of a symmetry or localization of dynamics
results in weakening of the long-range correlations with a tendency to behave as in the case
of Poisson distribution. (This should not be surprising as the Poisson distribution results
are due to a large number of symmetries present in the system.)
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In this paper, we have attempted to gain an insight into the complex world of
wavefunctions by numerically analysing the distribution of their zeros. Although the studies
here have been carried out for only one system, we believe in the general applicability of
results obtained here. Our study indicates that the zeros for strongly chaotic cases tend to
acquire a uniform distribution in the phase space in the limitN →∞; this distribution is
different from that of the set of random points. The analysis of various fluctuation measures
shows that, in the largeN -limit, the short-range correlations of zeros of quantum chaotic
systems are universal, parametric independent and have the same nature as those for the
random functions case or random polynomials but long-range correlations seem to differ. We
expect the nature of this deviation to be system dependent; this expectation has its roots in
the earlier observation of a similar tendency in the eigenvalues case. Again, the localization
versus delocalization phenomena of quantum state reveals itself in the statistical behaviour
of zeros too. The presence of a symmetry induces the changes in the distribution of zeros
and also modifies the long-range correlations. This again confirms that zeros contain a lot
of information about the underlying classical as well as quantum dynamics and therefore
can be used to gain a better understanding of the subject. But we have not as yet extracted
all the information about zeros. For example, we still have to understand how the motion
of zeros is affected by the variation of various parameters of the system. We also need to
analyse higher-order correlations which can tell us more about their parametric and system
dependence. It is also desirable to have a complete analytical formulation of statistical
properties of these zeros as it will help us gain a better understanding of wavefunctions.
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